A general Monte Carlo method for mapping multiple quantitative trait loci.

نویسنده

  • R C Jansen
چکیده

In this paper we address the mapping of multiple quantitative trait loci (QTLs) in line crosses for which the genetic data are highly incomplete. Such complicated situations occur, for instance, when dominant markers are used or when unequally informative markers are used in experiments with outbred populations. We describe a general and flexible Monte Carlo expectation-maximization (Monte Carlo EM) algorithm for fitting multiple-QTL models to such data. Implementation of this algorithm is straightforward in standard statistical software, but computation may take much time. The method may be generalized to cope with more complex models for animal and human pedigrees. A practical example is presented, where a three-QTL model is adopted in an outbreeding situation with dominant markers. The example is concerned with the linkage between randomly amplified polymorphic DNA (RAPD) markers and QTLs for partial resistance to Fusarium oxysporum in lily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric methods for genome-wide linkage analysis of human gene expression data

With the availability of high-throughput microarray technologies, investigators can simultaneously measure the expression levels of many thousands of genes in a short period. Although there are rich statistical methods for analyzing microarray data in the literature, limited work has been done in mapping expression quantitative trait loci (eQTL) that influence the variation in levels of gene ex...

متن کامل

A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci.

In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space representation of the problem that has fixed dimension. The proposed unified approach includes the existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We...

متن کامل

QTL Analysis using Bayesian Interval Mapping

R/qtlbim (www.qtlbim.org) provides a powerful suite of tools for model selection of the genetic architecture for traits influenced by multiple quantitative trait loci (QTL). The Markov chain Monte Carlo (MCMC) sampling approach draws samples from the more probable genetic architectures. Subsequent visualization and summary provides posterior estimates of the number and location of QTL, their ma...

متن کامل

Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms.

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL, and markers, allele frequencies of the markers, and ...

متن کامل

Bayesian inference for genomic imprinting underlying developmental characteristics

The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL) underlying complex traits. When a developmental characteristic such as growth or drug response is observed at multiple time points, understanding the dynamics of gene function governing the underlying feature should provide more biological information regarding the genetic contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 142 1  شماره 

صفحات  -

تاریخ انتشار 1996